DeepPicker: a Deep Learning Approach for Fully Automated Particle Picking in Cryo-EM
نویسندگان
چکیده
Particle picking is a time-consuming step in single-particle analysis and often requires significant interventions from users, which has become a bottleneck for future automated electron cryo-microscopy (cryo-EM). Here we report a deep learning framework, called DeepPicker, to address this problem and fill the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule training strategy to capture common features of particles from previously-analyzed micrographs, and thus does not require any human intervention during particle picking. Tests on the recently-published cryo-EM data of three complexes have demonstrated that our deep learning based scheme can successfully accomplish the human-level particle picking process and identify a sufficient number of particles that are comparable to those picked manually by human experts. These results indicate that DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination. DeepPicker is released as an open-source program, which can be downloaded from https://github.com/nejyeah/DeepPicker-python.
منابع مشابه
APPLE Picker: Automatic Particle Picking, a Low-Effort Cryo-EM Framework
Particle picking is a crucial first step in the computational pipeline of single-particle cryo-electron microscopy (cryo-EM). Selecting particles from the micrographs is difficult especially for small particles with low contrast. As high-resolution reconstruction typically requires hundreds of thousands of particles, manually picking that many particles is often too time-consuming. While semi-a...
متن کاملAutomatic post-picking using MAPPOS improves particle image detection from Cryo-EM micrographs
Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction are extensively used to reveal structural information on macromolecular complexes. Aiming at the highest achievable resolution, state of the art electron microscopes automatically acquire thousands of high-quality micrographs. Particles are detected on and boxed out from each micrograph using fully- or semi-automate...
متن کاملAutomatic post-picking improves particle image detection from Cryo-EM micrographs
Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction is extensively used to reveal structural information of macromolecular complexes. Aiming at the highest achievable resolution, state of the art electron microscopes acquire thousands of highquality images. Having collected these data, each single particle must be detected and windowed out. Several fullyor semi-autom...
متن کاملOn the parameters affecting dual-target-function evaluation of single-particle selection from cryo-electron micrographs
In the analysis of frozen hydrated biomolecules by single-particle cryo-electron microscopy, template-based particle picking by a target function called fast local correlation (FLC) allows a large number of particle images to be automatically picked from micrographs. A second, independent target function based on maximum likelihood (ML) can be used to align the images and verify the presence of...
متن کاملAutomated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification
Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto-atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of structural biology
دوره 195 3 شماره
صفحات -
تاریخ انتشار 2016